Differenze tra le versioni di "Lezioni: introduzione generale"

Da Gambas-it.org - Wikipedia.
Riga 21: Riga 21:
 
Ogni stato di tensione V<FONT Size=1>high</font> o V<FONT Size=1>low</font> è chiamato '''bit'''. Pertanto la CPU e la memoria lavorano tramite sequenze di ''bit'' aventi stato 1 oppure 0.
 
Ogni stato di tensione V<FONT Size=1>high</font> o V<FONT Size=1>low</font> è chiamato '''bit'''. Pertanto la CPU e la memoria lavorano tramite sequenze di ''bit'' aventi stato 1 oppure 0.
  
Affinché la CPU possa effettuare le operazioni in aritmetica binaria, che è capace di compiere, deve ricevere gruppi di sequenze di ''bit'', che per essa abbiano ''significato''. Ogni gruppo di stati di tensione, ''bit'', avente per la CPU un ''significato'' operativo (ad esempio un comando), è formato da 8 ''bit''. Ogni sequenza di bit (stati di tensione V<FONT Size=1>high</font> o V<FONT Size=1>low</font>), che giunge alla CPU in qualità di ''istruzione'', produce una elaborazione di tali dati e conseguenzialmente delle azioni, che hanno effetti esterni ad essa.
+
Affinché la CPU possa effettuare le operazioni in aritmetica binaria, che è capace di compiere, deve ricevere gruppi di sequenze di ''bit'', che per essa abbiano ''significato''. Ogni gruppo di stati di tensione, ''bit'', avente per la CPU un ''significato'' operativo (ad esempio un comando), è formato da 8 ''bit''. La CPU infatti esegue solo ''istruzioni'': ogni sequenza di bit (stati di tensione V<FONT Size=1>high</font> o V<FONT Size=1>low</font>), che giunge alla CPU in qualità di ''istruzione'', produce una elaborazione di tali dati e conseguenzialmente delle azioni, che hanno effetti esterni alla CPU medesima.
 
<BR>Così anche ogni cella (''indirizzo'') di memoria potrà contenere, memorizzato, sempre un insieme di 8 ''bit''.
 
<BR>Così anche ogni cella (''indirizzo'') di memoria potrà contenere, memorizzato, sempre un insieme di 8 ''bit''.
  

Versione delle 18:09, 20 apr 2018

Gli elementi fondamentali e basilari di un calcolatore sono un microprocessore, per elaborare i dati, e la memoria, per immagazzinare i dati elaborati o da elaborare da parte del microprocessore.

La Memoria

La Memoria è il supporto che consente di conservare dati, informazioni nel tempo.

Dal punto di vista logico la memoria è una sorta di vettore di elementi individuati univocamente da un indice progressivo che ne rappresenta l'indirizzo. Tali elementi possono essere rappresentati plasticamente da celle di una griglia più grande, che è la memoria medesima.

Codificazione dei dati in memoria: i dati come stati di tensione elettrica

I dati in memoria vengono salvati attraverso stati di tensione elettrica, così distinti:

  • tensione alta: Vhigh = 5v o 3,3v
  • tensione bassa: Vlow = 0v

In tal senso gli stati di tensione elettrica, appena visti, possono essere considerati i dati di informazione più basilari ed elementari nella tecnologia digitale informatica. Pertanto i dati vengono codificati sempre mediante "sequenze" di valori di tensione Vhigh o Vlow.
Esempio:

   5v    5v 5v       5v
__⌈¯¯⌊__⌈¯¯¯¯¯⌊_____⌈¯¯⌊
0v    0v       0v 0v

Rappresentazione degli stati di tensione elettrica nel sistema binario

Affinché sia umanamente più comprensibile soprattutto in fase di operazioni aritmetiche, tali valori di tensione vengono per convenzione rappresentati dalle due cifre binarie 0 e 1.

Ogni stato di tensione Vhigh o Vlow è chiamato bit. Pertanto la CPU e la memoria lavorano tramite sequenze di bit aventi stato 1 oppure 0.

Affinché la CPU possa effettuare le operazioni in aritmetica binaria, che è capace di compiere, deve ricevere gruppi di sequenze di bit, che per essa abbiano significato. Ogni gruppo di stati di tensione, bit, avente per la CPU un significato operativo (ad esempio un comando), è formato da 8 bit. La CPU infatti esegue solo istruzioni: ogni sequenza di bit (stati di tensione Vhigh o Vlow), che giunge alla CPU in qualità di istruzione, produce una elaborazione di tali dati e conseguenzialmente delle azioni, che hanno effetti esterni alla CPU medesima.
Così anche ogni cella (indirizzo) di memoria potrà contenere, memorizzato, sempre un insieme di 8 bit.

Ogni gruppo di 8 bit è chiamato Byte.

Riprendendo l'esempio, sopra esposto, di una sequenza di valori di tensioni elettriche, possiamo così rappresentarla in binario (sequenza di bit aventi stato 0 oppure stato 1):

  8 bit
01011001
 1 Byte

Il bit più a destra è ritenuto il bit meno significativo dell'ottetto, mentre il bit più a sinistra è considerato il bit più significativo.

Dalla rappresentazione binaria alla rappresentazione numerica

Per rendere ancor più comprensibile e semplificare la rappresentazione dei valori di tensione (per ora convertiti in rappresentazione binaria con bit posti a 0 o 1 a seconda della tensione elettrica rappresentata), si è convenzionalmente attribuito un numero a ciascun bit in ragione della sua posizione all'interno del Byte:

128 64 32 16 8 4 2 1

Ciò ha permesso infatti di rappresentare lo stato dei bit di ogni byte attraverso un numero intero dato dalla somma dei numeri rappresentati da ogni bit avente stato posto a 1.
Esempio:

| 0 | 1| 0| 1|0|0|0|1|
|128|64|32|16|8|4|2|1|
      ⭭     ⭭       ⭭
      64 + 16   +   1  =  81

Il Byte (insieme di 8 bit), come sopra rappresentato in binario, può dunque essere ancor più agevolmente e brevemente rappresentato, anche ai fini dell'effettuazione di una eventuale operazione aritmetica, dal valore intero 81.
Ciò significa che, se affermiamo che un certo Byte ha valore 81 in rappresentazione numerica decimale, lo stato interno dei suoi bit è quello rappresentato nel precedente esempio, ossia: 01010001. Conseguentemente si disporrà così l'invio di una sequenza di valori di tensione elettrica: 0v-5v-0v-5v-0v-0v-0v-5v.

In vero convenzionalmente, per rappresentare un valore assunto da un Byte, si è preferito usare il sistema esadecimale, il quale può rappresentare numeri molto grandi mediante una quantità di cifre inferiore a quella richiesto dalla rappresentazione numerica decimale.


Pagina in costruzione !